Transmission Concept Characteristics

- Type of signaling
- Direction
- Number of senders/receivers & relationships
- Throughput
- Transmission form

Type of Signaling - Analog

- Analog: based upon sine wave characteristics
 - Amplitude measure of strength
 - Frequency number of times that a signal's amplitude cycles from starting point to highest or lowest and lowest to highest over a fixed period of time; cycles per second – Hertz
 - Wavelength distance between corresponding points on cycle; Expressed in meters or feet

- Phase - wave position in relationship to starting or fixed point

Type of Signaling - Digital

- Discrete signals
- Voltage determines whether recognized as 0 or 1
 - Positive 1
 - Zero 0
- Not as susceptible to noise logically more easily reconstructed

Transmission Direction

- Simplex only transmits in one direction
- Half-duplex transmit in both direction but not at same time
- Duplex transmits in both direction over a medium at the same time; sometimes referred to as full-duplex

Multiplexers and Channels

- Device that allows multiple signals to travel at the same time over the transmission medium
- Some techniques:
 - Time Division Multiplexing
 - Statistical Multiplexing
 - Wavelength Division fiber only

Number of senders/receivers & relationships

- Point-to-point
 - One sender to one receiver
- Broadcast

 One sender and multiple receivers

Throughput

- Measure of how much data is transmitted over a given period of time
 - Capacity of network to move data

Baseband and Broadband

- Baseband: transmit only one signal at a time; direct current; digital signal
- Broadband: modulated as radio frequency analog pulses that use different ranges
- [some broadband terminology refers to high transmission rates of digital form]